Statistical Significance
|
Economic significance
|
Is it fitted well?
|
Is it an important factor?
|
[large] t-stat or [small] p-value
|
[large] bj values
|
Low t-stat => need more sample data?
|
Small bj values => Multicollinearity?
|
This is a sample regression output from fitlm() in Matlab:
Linear regression model:
y ~ 1 + x1
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.0028283 0.0023652 1.1958 0.23514
x1 0.91903 0.045009 20.419 2.5487e-34
Number of observations: 86, Error degrees of freedom: 84
Root Mean Squared Error: 0.0143
R-squared: 0.832, Adjusted R-Squared 0.83
F-statistic vs. constant model: 417, p-value = 2.55e-34
Linear regression model:
y ~ 1 + x1
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.0028283 0.0023652 1.1958 0.23514
x1 0.91903 0.045009 20.419 2.5487e-34
Number of observations: 86, Error degrees of freedom: 84
Root Mean Squared Error: 0.0143
R-squared: 0.832, Adjusted R-Squared 0.83
F-statistic vs. constant model: 417, p-value = 2.55e-34
No comments:
Post a Comment